Biostatistics I: Hypothesis testing

Continuous data: M-sample tests

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

e.andrinopoulou@erasmusmc.nl

♥@erandrinopoulou

- Analysis of variance (ANOVA) / F-test
- M-sample Kruskal-Wallis test
- ► Examples

Assumptions

- The variables are continuous
- The samples are independent
- Homogeneity of variance
- ► The data are normally distributed

Scenario

Is the mean BMI of the students different in groups 1, 2 and 3?

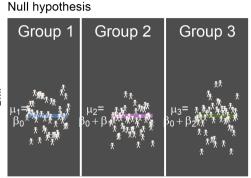
Connection with linear regression

 $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i, \text{ where } x_{1i} \text{ and } x_{2i} \text{ indicate whether the subject is in group 2 or 3}$ $H_0: y_i = \beta_0 \Rightarrow H_0: \beta_1 = \beta_2 = 0$

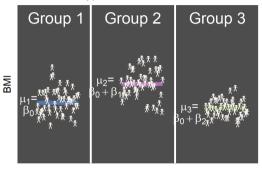
- ANOVA: each category's mean is compared to a grand mean
- Regression: dummy coded variables

Alternatively

 $H_0: \mu_1 = \mu_2 = \mu_3$ $H_1: \mu_1 \neq \mu_2 \text{ or } \mu_2 \neq \mu_3 \text{ or } \mu_1 \neq \mu_3$



Alternative hypothesis



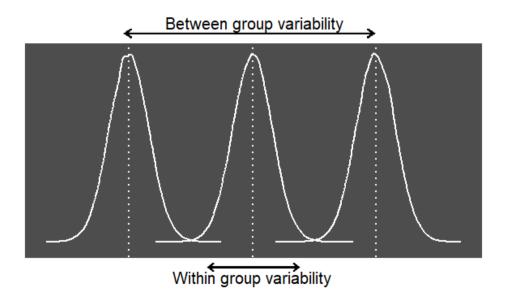
Notes...

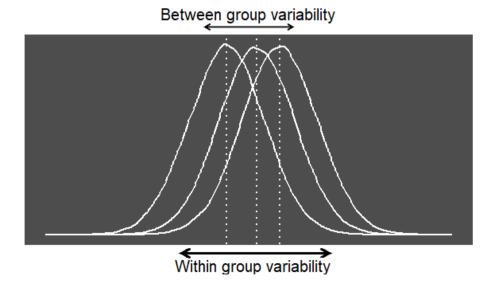
- It generalizes the t-test to more than two groups
 - ▶ Multiple two-sample t-tests ⇒ increased Type I error
- ANOVA tests if at least two groups were different from each other (it won't test which groups were different)
- A two way ANOVA will allow for 2 independent variables multivariable regression models

Test statistic

- Within group variation
- Between group variation
- F statistic: the ratio of between group variation to within group variation

Under the null hypothesis that the group means are the same \Rightarrow the between-group variability will be similar to the within-group variability





Sum of squares due to differences between groups: $SS_{between} = \sum_j n_j (\bar{x}_j - \bar{x})^2$

Sum of squares due to variability within groups: $SS_{within} = \sum_{j} \sum_{i} (x_{ij} - \bar{x}_j)^2$

Total sum of squares: $SS_{total} = SS_{between} + SS_{within} = \sum_{j} \sum_{i} (x_{ij} - \bar{x})^2 = \sum_{j} n_j (\bar{x}_j - \bar{x})^2 + \sum_{j} \sum_{i} (x_{ij} - \bar{x}_j)^2$ Mean squares: $MS_{between} = \frac{SS_{between}}{m-1}$ $MS_{within} = \frac{SS_{within}}{n-m}$ **Test statistic:** $F = \frac{MS_{between}}{MS_{within}}$

Sampling distribution

- F-distribution with $df_1 = m 1$ and $df_2 = n m$
- Critical value and p-value

Type I error

• Normally α = 0.05

Draw conclusions

• Compare test statistic (F) with the critical value or the p-value with α

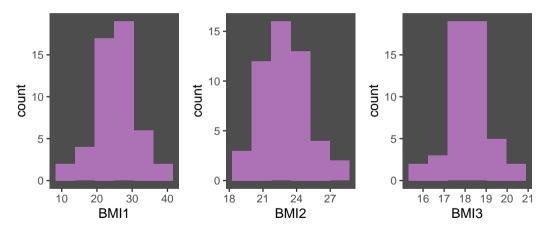
Scenario

Is the mean BMI of the students different in groups 1, 2 and 3?

Hypothesis

 $H_0: \mu_1 = \mu_2 = \mu_3$ $H_1: \mu_1 \neq \mu_2 \text{ or } \mu_2 \neq \mu_3 \text{ or } \mu_1 \neq \mu_3$

Collect and visualize data



Test statistic

Let's assume that:

- Sample mean of group 1: \bar{x}_1 = 25.1633
- Sample mean of group 2: \bar{x}_2 = 22.8823
- Sample mean of group 2: $\bar{x}_3 = 18.1985$
- Number of subjects in the groups: $n_1 = n_2 = n_3 = 50$

$$\begin{split} SS_{between} &= \sum_{j} n_{j} (\bar{x}_{j} - \bar{x})^{2} = 1260.8 \text{ and } SS_{within} = \sum_{j} \sum_{i} (x_{ij} - \bar{x}_{j})^{2} = 1721.1 \\ \text{Total sum of squares:} \\ SS_{total} &= SS_{between} + SS_{within} = 2981.9 \\ \text{Mean squares:} \\ MS_{between} &= \frac{SS_{between}}{m-1} = \frac{1260.8}{3-1} = 630.4 \text{ and } MS_{within} = \frac{SS_{within}}{n-m} = \frac{1721.1}{150-3} = 11.7 \\ F &= \frac{MS_{between}}{MS_{within}} = \frac{630.4}{11.7} = 53.8 \end{split}$$

Degrees of freedom

```
df_1 = m - 1 = 3 - 1 = 2 and df_2 = n - m = 150 - 3 = 147
```

Type I error

 α = 0.05

Critical values

Using R we get the critical value from the *F*-distribution: critical value_{α} = critical value_{0.05}

qf(p = 0.05, df1 = 2, df2 = 147, lower.tail = FALSE)

[1] 3.057621

Draw conclusions

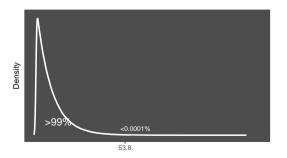
We reject the H_0 if:

F > critical value $_{\alpha}$

We have 53.8 > 3.06 \Rightarrow we reject the H_0

Using R we obtain the p-value from the *F*-distribution:

[1] 2.932458e-18



Assumptions

 Within and between groups observations are independent of one another

Scenario

Is the distribution of the score values of the students different in groups 1, 2 and 3?

Connection with linear regression

 $rank(y_i) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i$, where x_{1i} and x_{2i} indicate whether the subject is in group 2 or 3

 $H_0: y_i = \beta_0 \Rightarrow H_0: \beta_1 = \beta_2 = 0$

Alternatively

 H_0 : the samples (groups) are from identical populations H_1 : at least one of the samples (groups) comes from a different population than the others

Test statistic

- Rank all data from all groups together (assign any tied values the average of the ranks they would have received had they not been tied)
- Calculate:
 - if we do not have ties: $H = \frac{12}{n(n+1)} \sum_j n_j \bar{r}_j^2 3(n+1)$, where
 - n is the total number of observations in all groups
 - *n_j* is the number of observations in group *j*
 - $\bar{r}_j = \frac{\sum_{i=1}^{n_j} r_{ij}}{n_i}$ where r_{ij} is the rank of observation *i* from group *j*
 - if we have ties: $H = \frac{H}{1 \frac{\sum_{j} (T_j^3 T_j)}{(n^3 n)}}$ where T_j is the number of tied values in group j

Sampling distribution

- χ^2 -distribution with df = m 1, where m is the total number of groups
- Critical value and p-value

For small sample size, we can use the exact distribution

Type I error

Normally α = 0.05

Draw conclusions

• Compare test statistic (H) with the critical values or the p-value with α

Scenario

Is the distribution of the score values of the students different in groups 1, 2 and 3?

Hypothesis

 H_0 : the samples (groups) are from identical populations H_1 : at least one of the samples (groups) comes from a different population than the others

M-sample Kruskal-Wallis test: Application

Collect and visualize data

Groups	values	rank	mean rank per group
· ·			
1	8.88	5	9.17
1	9.54	6	9.17
1	13.12	13	9.17
1	10.14	8	9.17
1	10.26	9	9.17
1	13.43	14	9.17
2	9.92	7	3.25
2	6.47	1	3.25
2	7.63	2	3.25
2	8.11	3	3.25
3	15.90	15	10.40
3	12.44	11	10.40
3	12.60	12	10.40
3	11.44	10	10.40
3	8.78	4	10.40

M-sample Kruskal-Wallis test: Application

Hypothesis

 H_0 : the samples (groups) are from identical populations H_1 : at least one of the samples (groups) comes from a different population than the others

Test statistic

No ties:

$$\begin{split} H &= \frac{12}{n(n+1)} \sum_{j} n_{j} \bar{r}_{j}^{2} - 3(n+1) = \\ &\frac{12}{15(15+1)} (9.17^{2} * 6 + 3.25^{2} * 4 + 10.40^{2} * 5) - 3(15+1) = 6.38 \end{split}$$

Degrees of freedom

df = number of groups - 1 = 3 - 1 = 2

Type I error

 α = 0.05

Critical values

Using R we get the critical values from the exact distribution: critical value_{α} = critical value_{0.05}

qchisq(p = 0.05, df = 2, lower.tail = FALSE)

[1] 5.991465

M-sample Kruskal-Wallis test: Application

Draw conclusions

We reject the H_0 if:

• $H > critical value_{\alpha}$

We have $6.38 > 5.99 \Rightarrow$ we reject the H_0

Using R we obtain the p-value from the exact distribution:

[1] 0.04117187

